DE-Cadherin regulates unconventional Myosin ID and Myosin IC in Drosophila left-right asymmetry establishment.

نویسندگان

  • Astrid G Petzoldt
  • Jean-Baptiste Coutelis
  • Charles Géminard
  • Pauline Spéder
  • Magali Suzanne
  • Delphine Cerezo
  • Stéphane Noselli
چکیده

In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct and genitalia. We have previously shown that MyoID interacts physically with β-Catenin, suggesting a role of the adherens junction in Drosophila L/R asymmetry. Here, we show that DE-Cadherin co-immunoprecipitates with MyoID and is required for MyoID L/R activity. We further demonstrate that MyoIC, a closely related unconventional type I myosin, can antagonize MyoID L/R activity by preventing its binding to adherens junction components, both in vitro and in vivo. Interestingly, DE-Cadherin inhibits MyoIC, providing a protective mechanism to MyoID function. Conditional genetic experiments indicate that DE-Cadherin, MyoIC and MyoID show temporal synchronicity for their function in L/R asymmetry. These data suggest that following MyoID recruitment by β-Catenin at the adherens junction, DE-Cadherin has a twofold effect on Drosophila L/R asymmetry by promoting MyoID activity and repressing that of MyoIC. Interestingly, the product of the vertebrate situs inversus gene inversin also physically interacts with β-Catenin, suggesting that the adherens junction might serve as a conserved platform for determinants to establish L/R asymmetry both in vertebrates and invertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Left-right asymmetry: class I myosins show the direction.

Myosins are actin-based molecular motors that are found in almost all eukaryotes. Phylogenetic analysis allows the discrimination of 37 different types of myosins, most with unknown functions. Recent work in Drosophila has revealed a crucial role for type ID unconventional myosin in left-right asymmetry. Mutations in Myosin ID completely reverse the left-right axis (situs inversus), a phenotype...

متن کامل

GR-04 A novel regulatory network of left–right asymmetry establishment in Drosophila melanogaster: Interaction between the unconventional myosins ID and IC and the adherens junction component DE-cadherin

somitogenesis clock was evaluated by assessing the rate and number of somites formed and gene expression alterations upon notochord ablation. Chick embryo explants were cultured for different time periods with or without notochord. We found that notochord removal delays somite formation from the undetermined PSM and alters both clock and determination front gene expression. We show that Shh is ...

متن کامل

Left–Right Asymmetry: Actin–Myosin through the Looking Glass

Despite being bilaterally symmetric, most Metazoa exhibit clear, genetically determined left-right differences. In several animals, microtubule-based structures are thought to be the source of chiral information used to establish handedness. Now, two new studies in Drosophila identify a role for unconventional myosin motors in this process.

متن کامل

The Atypical Cadherin Dachsous Controls Left-Right Asymmetry in Drosophila.

Left-right (LR) asymmetry is essential for organ development and function in metazoans, but how initial LR cue is relayed to tissues still remains unclear. Here, we propose a mechanism by which the Drosophila LR determinant Myosin ID (MyoID) transfers LR information to neighboring cells through the planar cell polarity (PCP) atypical cadherin Dachsous (Ds). Molecular interaction between MyoID a...

متن کامل

Class I myosins have overlapping and specialized functions in left-right asymmetric development in Drosophila.

The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB families, respectively. Previous loss-o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 139 10  شماره 

صفحات  -

تاریخ انتشار 2012